RICE O\ Meta

Pre-train and Search: Efficient Embedding Table

Sharding with Pre-trained Neural Cost Models

Ao

IATALAR

Daochen Zhay, Louis Fengl, Liang Luoi, Bhargav Bhushanami, Zirui Liuf, Yusuo Hul, Jade Niel, Yuzhen
Huangi, Yuandong Tiani, Arun Kejariwali, Xia Huf

TDepartment of Computer Science, Rice University
T Meta Platforms, Inc.

Background of Embedding Table Sharding

e What is the embedding table? Embedding learning is used
for modeling categorical features in deep recommendation models
(DLRMs). It maps sparse categorical features into dense vectors.

e What is the embedding table sharding problem?
Industrial recommendation models demand an extremely large
number of parameters for embedding tables, requiring multi-terabyte
memory. We have to partition the tables and put them in multiple
GPUs. However, improper partitioning can lead to imbalance.

e What is the limitation of the existing methods” They
rely on heuristics with oversimplified cost functions, so they often
have unsatistactory sharding performance.

Sparse Features Embedding Table

Dense Features

% Fullly Connected Layers

GPU O ‘ @

» Prediction

» Prediction

GPU 1 %

» Prediction

GPU 2 , @

—
Embedding Costs

Figure: An illustrative distributed training workflow of DLRMs on three GPUs.

Our Proposal: “Pre-train and Search”

Original Table Sharded Table

- . Pre-train

Costs of Random
Sharidng Plans

Table Pool Neural Cost Model

[] Search [
AM— O G AT C 0T | af—

[J

Optimal Sharding Plan

Unseen Sharding task

Figure: NeuroShard identifies the optimal sharding plan with “pre-train, and search”

e High-level idea. Pre-train a universal neural cost model and then
perform a search with the cost model.

Implementation
Computation Cost , Communication Costs of the D Devices
|
4 : A
' |
|
|
|
A ! MLP
Sum :
) |
| :
A A A i 3
| .
|
|
|
Table Table Table . Starting i > D Devices
Features Features Features . Time ata size
|
|
I y

Figure: Computation (left) and communication (right) cost models. We train separate
models to predict computation and communication costs.

Top Colum-wise sharding plan Beam Search

Grid Search

Max Greedy Cost
Dimension Models

Figure: The search process. The outer loop finds the best column-wise sharding plan
with beam search. The inner loop focuses on the max dimension constraint of greedy
allocation with grid search.

Results

NeuroShard outperforms the existing sharding strategies on benchmark
sharding datasets (results available in full text). Additionally, it also

boosts the training throughput of a production-scale model.
: . Embedding Cost | Training Throughput

Sharding Algorithm (Milliseconds) Improvement
Random 118.3 -
Size-based 107.6 +4.0%
Dim-based 90.8 +13.9%
Lookup-based 102.4 +11.9%
Size-lookup-based 109.2 +12.8%
AutoShard 86.6 +32.4%
DreamShard 61.6 +45.3%
TorchRec 86.4 +34.6%
NeuroShard 55.2 +54.9%

Figure: Embedding cost and overall training throughput improvement of NeuroShard
and baselines on a production model. The results are collected from a training cluster

with 128 GPUs.

