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Background of Embedding Table Sharding

e What is the embedding table? Embedding learning is used
for modeling categorical features in deep recommendation models
(DLRMs). It maps sparse categorical features into dense vectors.

e What is the embedding table sharding problem?
Industrial recommendation models demand an extremely large
number of parameters for embedding tables, requiring multi-terabyte
memory. We have to partition the tables and put them in multiple
GPUs. However, improper partitioning can lead to imbalance.

e What is the limitation of the existing methods” They
rely on heuristics with oversimplified cost functions, so they often
have unsatistactory sharding performance.
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Figure: An illustrative distributed training workflow of DLRMs on three GPUs.

Our Proposal: “Pre-train and Search”
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Figure: NeuroShard identifies the optimal sharding plan with “pre-train, and search”

e High-level idea. Pre-train a universal neural cost model and then
perform a search with the cost model.
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Figure: Computation (left) and communication (right) cost models. We train separate
models to predict computation and communication costs.
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Figure: The search process. The outer loop finds the best column-wise sharding plan
with beam search. The inner loop focuses on the max dimension constraint of greedy
allocation with grid search.

Results

NeuroShard outperforms the existing sharding strategies on benchmark
sharding datasets (results available in full text). Additionally, it also

boosts the training throughput of a production-scale model.
: . Embedding Cost | Training Throughput

Sharding Algorithm (Milliseconds) Improvement
Random 118.3 -
Size-based 107.6 +4.0%
Dim-based 90.8 +13.9%
Lookup-based 102.4 +11.9%
Size-lookup-based 109.2 +12.8%
AutoShard 86.6 +32.4%
DreamShard 61.6 +45.3%
TorchRec 86.4 +34.6%
NeuroShard 55.2 +54.9%

Figure: Embedding cost and overall training throughput improvement of NeuroShard
and baselines on a production model. The results are collected from a training cluster

with 128 GPUs.




